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Keck, Nathan, M.S., Spring 2012     Exercise Science 
  
Effect of Lower Limb Compression (NormaTec) on Glycogen Resynthesis 
 
Chairperson:  Brent C. Ruby, Ph.D. 
 
 
 Purpose: The purpose of this study was to investigate the effects of pneumatic compression 
pants on post-exercise glycogen resynthesis.  Methods: Active male subjects (n=10) completed 
two trials consisting of a 90-minute glycogen depleting ride, followed by 4 hours of recovery 
with either a pneumatic compression device (PCD) or passive recovery (PR) in a random 
counterbalanced order.  A carbohydrate beverage (1.8 g.kg-1 bodyweight) was provided at 0 and 
2 hours post exercise.  Muscle biopsies (vastus lateralis) were obtained immediately and 4 
hours post exercise for glycogen analyses.  Blood samples were collected throughout recovery 
to measure glucose and insulin.  Eight finger stick blood samples for lactate were collected in 
the last 20 minutes of the exercise period and during the initial portion of the recovery period.  
Heart rate was monitored throughout the entire trial.  During the PCD trial subjects recovered 
using a commercially available recovery device (NormaTec PCD, Newton Center, MA) 
operational at 0-60 and 120-180 min into recovery period.   The same PCD was worn during the 
passive recovery trial but was not turned on to create pulsatile pressures.   Results: Muscle 
glycogen increased similarly over the recovery period for both trials (6.9 ± 0.8 and 6.9 ± 0.5 
mmol·kg-1 wet wt.·hr-1 for the PR and PCD trials, respectively) additionally, blood glucose, 
insulin, and lactate concentrations changed in respect to time but were not different between 
trials (p>0.05).  Conclusion: The use of PCD did not alter the rate of muscle glycogen 
resynthesis, blood lactate and the blood glucose and insulin concentrations associated with a 
post exercise oral glucose load. 
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INTRODUCTION 

Recovery post exercise is a key component to repeated performances during subsequent 

exercise.  After exercise the internal milieu of the body is disrupted (60).  This disruption may 

result from creatine phosphate and adenosine triphosphate depletion as well as a decrease in 

muscle and blood pH, blood glucose concentration and muscle glycogen level (30, 37, 63) as 

well as increased inflammation (54) and fluid shifts from vasculature to the muscle (30).  

Consequently, any recovery modality  that returns the disrupted internal environment back to 

homeostatic levels should lead to the ability to perform with maximal effort in subsequent 

exercise sessions (60).   Therefore many recovery modalities have become common such as, 

massage, compression garments, and active recovery (24).  However, evidence as to whether 

they enhance between-training recovery is equivocal (4). 

 

Proper recovery post exercise has the potential to lessen or even totally diminish delayed onset 

muscle soreness (DOMS), fatigue, decreased performance on subsequent work bouts, and 

overtraining.  Lack of appropriate recovery may result in an athlete being unable to train at the 

required intensity or complete the required load at the next training session (4).  Furthermore, 

full recovery is necessary for optimal performance in competition (4).  If recovery is 

compromised, it may reduce the athlete’s ability to train at the desired intensity due to reduced 

muscle glycogen (39, 89).   Several factors have been shown to influence the rate of glycogen 

resynthesis following depletion.  These include the amount (48), timing (47), and CHO 

composition ingested post exercise (46, 52, 53, 77).  Additionally, it has been shown that 

muscle temperature also affects the rate of glycogen synthesis (66, 81, 82).  Although these 
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variables are known to have an effect of glycogen resynthesis the effect of 

massage/compression is still equivocal.   

 

STATEMENT OF PROBLEM 

To date many of the current studies investigating these recovery modalities after exercise have 

been inconclusive.  Most studies contain methodological limitations including insufficient 

duration of treatment, inadequate number of subjects, or the over/under working of muscles 

that limit practical conclusions (65).  In addition, very limited research  to date has reported the 

effects of either compression or massage on the rate of post-exercise glycogen synthesis (23). 

 

PURPOSE 

The purpose of this study was to evaluate the effect of a mechanical pneumatic 

compression/peristaltic pulsing applied by a commercially available portable compression 

device (PCD) on muscle glycogen recovery, blood glucose, insulin, lactate and heart rate after 

exercise and oral glucose feedings. 

.  

HYPOTHESES 

1. Treatment with the NormaTec PCD will not alter rates of muscle glycogen resynthesis 

post exercise. 

2. Treatment with the NormaTec PCD will have no effect on lactate concentration post 

exercise. 
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3. Treatment with the NormaTec PCD will have no effect on the blood glucose response 

after ingestion of a carbohydrate (CHO) drink post exercise. 

4. Treatment with the NormaTec PCD will have no effect on the insulin response after 

ingestion of CHO drink post exercise. 

 

SIGNIFICANCE OF THE STUDY 

Other studies have evaluated the effects of both massage and compression on post exercise 

lactate concentration, but no known studies have evaluated their effect on glycogen 

resynthesis, blood glucose, and insulin post exercise.  Therefore, this study was the first study 

to identify if compression has any effect on glycogen resynthesis, blood glucose, and insulin 

after exercise and in response to multiple oral glucose bolus feedings.  Additionally, this was the 

first study to evaluate changes in post exercise blood lactate using pneumatic compression 

combined with peristaltic pulsing. 

 

LIMITATIONS 

1. The subjects had varying physical abilities but were be males between 18-40 years of 

age with a VO2  peak of  > 40ml/kg/min and capable of completing 90 minutes of 

vigorous cycling without nutritional assistance. 

2. Participants’ lifestyle between the trials could not be controlled.   In order to better 

control physical activity levels, a dietary and physical activity recall for the day prior to 

the exercise trial was recorded and repeated prior to the next trial. 
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3. The use of any instrumentation could have caused error.  To limit this occurrence of 

instrumentation error, all researchers were trained and the equipment was carefully 

calibrated. 

4. Participants were not randomly sampled and were recruited by convenience.  However, 

random ordering of treatments will be utilized. 

 

DELIMITATIONS 

1. All participants in this study were active male cyclists with a VO2  peak of >40ml/kg/min.   

Due to the effects of the menstrual cycle on fuel utilization, females were excluded from 

this study.  

2. Participants were apparently healthy and were excluded from the study if they had any 

contraindications on the PAR-Q health questionnaire. 

 

DEFINITION OF TERMS 

VO2  peak: The maximal amount of oxygen consumed during a specific mode of exercise. 

Graded exercise test: An incremental maximal exercise stress test done to determine an 

individual’s VO2  peak as well as maximal wattage on a cycle ergometer. 

Pneumatic compression device (PCD): An air driven unit which applies an external pressure 

gradient (30-90mmHg) to a person’s skin. 

Compression garment: A piece of clothing usually made from lycra and or nylon that is designed 

to apply an external pressure gradient (~18-23mmHg) to a person’s skin. 

Active recovery: low intensity exercise used to aid in the recovery process. 
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Passive recovery: Sedentary or a state of non-activity following exercise.    

 

REVIEW OF LITERATURE 

Anecdotal information from coaches, athletic trainers, and athletes suggest that various types 

of recovery modalities including the use of active recovery (60) massage (14, 60, 92, 95), 

contrast bathing (29), and compression garments (95) may have a positive effect on returning 

the body’s internal environment to homeostatic levels at an accelerated rate.  While a review of 

some of these recovery modalities will be made to identify potential research directions some 

recovery modalities are beyond the scope of this article.  

 

Active Recovery   

It has been well documented that performing low intensity aerobic exercise immediately post 

exercise is more effective in accelerating lactate clearance than passive recovery (5, 31, 34, 40, 

76, 85, 93).  This increased lactate clearance is promoted by an increased metabolic rate and 

systemic blood flow, thereby accelerating lactate metabolism via oxidation and 

gluconeogenesis (12, 13, 34, 76).  Therefore, increasing the rate that one may achieve 

homeostasis after exercise. 

 

It is also important to note that several studies have shown that active recovery in a fasted 

state impairs glycogen resynthesis (9, 19, 27).  Thus, active recovery may be detrimental to 

rapid glycogen resynthesis (4) and as a result passive recovery may be more beneficial in this 

sense.  
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Massage 

Massage has been used for centuries in an attempt to prevent and cure injuries (11, 18, 87).  

Massage is considered to enhance muscle relaxation (67, 96), reduce muscle tension, and 

soreness (83, 88), promote the healing process (86), and consequently, improve athletic 

performance (72, 91, 99).  Massage is used extensively in the training of elite athletes and is 

commonly thought to decrease edema and pain, enhance blood lactate removal and alleviate 

DOMS largely by increasing muscle blood flow (92).  

 

The most recent studies using Doppler ultrasound to measure blood flow and vessel diameter 

found no increase in muscle blood flow during massage with (41, 88) or without (79) preceding 

exercise.  Additionally, Cafarelli et al. noted that previous studies concerning the effects of 

massage on skeletal muscle blood flow have been contradictory and difficult to compare due to 

differences in experimental designs, statistical analyses, and the massage techniques used (16).  

Based upon the lack of scientific evidence the efficacy of massage in promoting muscle blood 

flow is inconclusive. 

 

Several studies have attempted to evaluate the effect of massage on blood lactate 

concentration.  Despite efforts to determine the effects of massage on blood lactate, little 

empirical evidence has been found (92) even though participants reported less fatigue after 

massage application (35, 38, 64).  Therefore, Martin et al., has concluded  that currently there is 

a lack of controlled research to support the efficacy of sports massage on accelerating the rate 

of post-exercise blood lactate clearance (62).  However Crane et al. found that massage appears 
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to reduce inflammation and promote mitochondrial biogenesis after exercise induced muscle 

damage (22). 

 

Contrast Bathing  

Contrast water bathing is increasingly being used by athletes to accelerate post exercise 

recovery (90).  It is usually done by an athlete as soon as practical post exercise.  The process 

typically involves alternating between hot and cold water immersion pools for a period of time 

lasting from 4-30 minutes total, with 30 second to 5 minute immersions per pool done 

repeatedly (97).  

 

It is speculated that contrast bathing by promoting increased blood flow by alternating 

vasodilation and vasoconstriction (42).  Anecdotally athletes have reported beneficial effect on 

subsequent exercise.  However the use of contrast bathing is still inconclusive as there is 

insufficient evidence to support its use post exercise.  This is evidence by a several studies that 

have found inconclusive evidence on subsequent performance enhancements when compared 

with a control (20, 25, 28, 36, 44, 56, 57, 74). 

 

Compression Garments 

There appears to be a lay acceptance that compression garments aid in post exercise recovery 

(4).  Compression garments are considered to provide an external pressure gradient that 

theoretically reduces the space available for swelling, hemorrhage, or hematoma formation 

(68).   To date, the evidence as to whether compression is effective at enhancing recovery 
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between exercise bouts remains to be fully elucidated (4).   Additionally, limited research that 

has been published has produced conflicting results regarding the potential benefits of wearing 

compression garments during recovery (8, 59).  Although evidence may be conflicting, what 

remains apparent through anecdotal reports is that recovery or regeneration interventions are 

commonly used among athletes.  

 

Many studies have underlined a close association between lactate and exercise performance 

(71).  Investigators have observed that work capacity and performance were adversely affected 

by elevated blood lactate levels (3, 55, 58, 84).  However, a strong argument for lactate 

production not being a cause of metabolic acidosis has been made (73), additionally recent 

evidence suggests that acidosis has little effect of muscle contraction at physiological 

temperatures (17, 94).  Therefore, lactate removal does not appear to be a valid indicator of 

recovery (4).  But an increase of skeletal muscle blood flow  may accelerate the rate at which 

lactate is shuttled to various sites of elimination, thereby promoting lactate clearance (16, 18), 

thus in this sense blood lactate is more of a “marker” of blood flow than it is a “marker” of 

recovery (4, 73). 

 

It has been thought that using compression garments increases blood flow by providing a 

higher pressure gradient at the ankles than the more proximal regions of the leg (49). Similarly, 

compression garments have been noted by several studies to increase venous return (1, 43, 

68).  However, the results of these studies may not be applicable to a healthy population as 

some of these studies have been done on post-operative and bedridden patients (1) or in the 
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treatment of patients with chronic venous insufficiency (43).  Additionally, this increase in blood 

flow is hypothesized to aid in the removal of lactate (24) to sites where it could be eliminated or 

converted and used as energy.  However, as stated earlier in this manuscript the effects of 

compression on lactate removal remains inconclusive. 

 

Glycogen Synthesis 

Muscle glycogen is the primary fuel source during prolonged moderate to high intensity 

exercise (75).  Fatigue during prolonged exercise is often associated with muscle glycogen 

depletion (6) and therefore high pre-exercise muscle glycogen levels are believed to be 

essential for optimal performance (15, 21, 45).   

 

Glycogen synthesis following a glycogen depleting exercise occurs in two phases.  Initially, there 

is a period of rapid synthesis that does not require the presence of insulin and lasts for 30-60 

minutes (51).  It has been suggested that the rapid phase only occurs when post exercise 

muscle glycogen concentration are lower than 128-150 mmol/kg dw (61, 69) and carbohydrate 

(CHO) is provided immediately after exercise (47).  Following this rapid phase, muscle glycogen 

synthesis occurs at a much slower rate and can last for several hours.  During this phase 

muscular contraction and insulin have been shown to increase the activity of glycogen 

synthase, the rate-limiting enzyme in glycogen synthesis (51).  

 

As previously mentioned, several factors have been shown to influence the rate of glycogen 

synthesis following depletion.  These include the amount (48), timing (47), and CHO 
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composition ingested post exercise (46, 52, 53, 77).  Additionally, it has been shown that 

ambient and muscle temperature also may affect the rate of glycogen synthesis (66, 81, 82).  

Therefore, these variables need to be consistent and controlled in order to achieve reliable 

data. 

 

To date no research has evaluated the effects of either compression garments or massage on 

the rate of glycogen synthesis during recovery in athletes.  As Barnett comments in a recent 

review of recovery modalities, important factors associated with recovery such as the rate of 

post-exercise glycogen synthesis need to be considered in future research (4).  

 

Blood Glucose and Insulin  

Despite periods of feeding and fasting, plasma glucose remains in a narrow range between 4-

7mM in healthy individuals (78).  This tight control is governed by the balance of glucose 

absorption from the small intestine, production by the liver, and uptake in muscle and fat 

tissue.  Insulin also inhibits hepatic glucose production thus serving as the primary regulator of 

blood glucose concentration.  Finally, insulin promotes the storage of muscle glycogen  (50) as 

well as storage of other substrates that are beyond the scope of this review.  

 

After orally ingesting CHO blood glucose elevates to higher values than seen during normal 

resting.  This elevated blood glucose triggers the release of insulin from the β-cells of the 

pancreas.  Insulin then acts to aid in the translocation of the GLUT-4 transporter protein to the 

muscle cell membrane.  GLUT-4 then carries the glucose into the muscle cell where the glucose 
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is either utilized or undergoes a series of transformations that results in the production of 

muscle glycogen.  Additionally, recent studies have also shown that acute exercise enhances 

GLUT-4 translocation  in addition to insulin (10).  

 

After CHO ingestion the typical time period for elevated blood glucose and insulin can last for 

several hours in a normal, healthy individual.  However, peak insulin and glucose generally 

occurs in the first 60 minutes post CHO feeding.  During this time period a significant amount of 

glucose is taken into the cell via the translocation of GLUT-4 to the cell wall as a result of 

elevated insulin values. This increased glucose uptake into the muscle cell lends to the potential 

for increased glycogen resynthesis. However, if this process were to be enhanced or diminished 

then an increased or decreased glycogen resynthesis rate would respectively occur.   

 

Summary  

While anecdotal information from coaches, athletic trainers, and athletes suggest that various 

types of recovery modalities may have a positive effect on returning the body’s internal 

environment to homeostatic levels at an accelerated rate these claims have yet to be fully 

substantiated in scientific literature. Therefore, the role of how each of these recovery 

modalities affects the recovery process is largely unknown or inconclusive. Therefore, the 

purpose of this study is to evaluate the effects of a mechanical pneumatic 

compression/peristaltic pulsing applied by a commercially available portable compression 

device (PCD) on muscle glycogen recovery, blood glucose, insulin, lactate and heart rate after 

exercise and oral glucose feedings. 
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METHODS 

Experimental Approach to the Problem 

In the present study, a randomized crossover experimental design was used to determine the 

effects of wearing a non-invasive pneumatic compression device (PCD) vs. a non-compression 

passive recovery (PR) control condition.  Muscle glycogen, blood glucose, insulin, and lactate 

were monitored with heart rate during the recovery period.  

 

Subjects 

The investigation was approved by the University of Montana’s Institutional Review Board for 

use of human subjects in research.  Each subject had the experimental risks and the study 

explained to them and subsequently provided written informed consent to participate.  Prior to 

data collection each subject completed a Physical Activity Readiness Questionnaire (PAR-Q).   

Ten active male participants (n=10) completed the study.  All study participants were healthy, 

injury free, and familiar with moderate-to-high intensity exercise (Table 1).  

 

Procedures 

Preliminary testing 

Timing.  All preliminary testing for each subject was performed no less than 48 hours prior to 

any experimental testing and after a minimum of a three hour fast.  

 

Body composition.  Body composition was measured using hydrodensitometry.  Briefly, an 

electronic strain-gauge scale (Exertech, Dreshbach, MN) measured underwater weight (33).  
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Under water weight was then used to calculate body density and using estimated residual lung 

volume and converted to body composition using the Siri equation (80).   

 

VO2 peak testing.  A maximal exercise test was completed on a laboratory cycle ergometer 

(Velotron, RacerMate Inc. , Seattle WA) to determine peak oxygen uptake (VO2peak) and 

maximal power output (Wmax).  Subjects completed a graded exercise protocol, starting at 95 

watts and increasing by 35 watts every 3 minutes until volitional fatigue.  During the test, 

expired gases were continuously collected and analyzed every 15 seconds in a mixing chamber 

using a calibrated metabolic cart (Parvomedics, Inc., Sandy, UT).  Peak oxygen uptake was 

determined as the highest achieved oxygen uptake during the test while maximum power 

output was calculated as the last completed stage in watts plus the fraction of time that was 

completed in partial stages multiplied by 35 watts.  

 

Experimental testing (Figure 1a and 1b) 

 

Dietary recall.  For 24 hours prior to the subject’s first exercise/recovery trial, a detailed food 

log was maintained.  For the second trial the subjects were asked to consume the same food 

and quantity of those foods as they did for the first trial.  The subjects were also asked to 

refrain from physical activity in the 24 hour period prior to each trial.  

 

Glycogen depletion ride.  Participants were scheduled for two exercise trials which were 

separated by no less than one week.  Before each exercise trial the subjects were asked to fast 
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for 12 hours prior to arrival.  Upon arrival to the laboratory the subjects cycled in a thermo-

neutral environment for a total of 90 minutes on the same Velotron ergometer.  Each 90 

minute cycling session included 10 minutes at the power output corresponding to 55% watt 

max.  Thereafter a series of 10 intervals (including two minutes at 80% watt max followed by 

four minutes at 50% watt max) were completed.  After the series of 10 intervals the subjects 

completed 12 minutes at 60% watt max followed by 10 minutes at 50% watt max.  During the 

exercise trials subjects were allowed to consume water ad libitum, which was then 

standardized for the second trial. 

 

Blood Lactate.  Eight finger stick blood samples were taken during each trial to measure blood 

lactate concentration.  The samples were collected starting after the completion of the last 

(10th) interval during the depletion ride.  Additional samples were collected at 10 and 20 

minutes after completion of the last interval.   Sampling was continued after the collection of 

the post-exercise muscle biopsy at 0, 5, 10, 15, 25 minutes into the recovery period.  Prior to 

collection, the site was cleaned with alcohol before obtaining the blood sample.  Once the 25 µl 

blood sample was obtained it was placed in 50 µl of a cell lysing agent and frozen to -30 ⁰C until 

subsequent analysis using a YSI 1500 (Yellow Spring Instruments, Inc., Yellow Springs, OH).  

 

Muscle Biopsies.  Muscle biopsies of the vastus lateralis muscle were taken immediately and 4 

hours after the exercise bout using the percutaneous biopsy needle technique with the aid of 

suction (26).  The 4-hour post exercise biopsies were taken from a site approximately 2 cm 

proximal to the previous biopsy location.  Biopsies for the second trial were taken from the 
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opposite leg from the first trial.  Excess blood, fat, and connective tissue were immediately 

removed, and tissue samples were frozen in liquid nitrogen and stored in a freezer at -80 ⁰C for 

the later analysis of muscle glycogen.  

 

Blood sampling.  Blood samples to examine plasma glucose and insulin concentration were 

drawn immediately after exercise, then at 30, 60, 120, 150, 180, and 240 minutes after 

exercise.  Samples were obtained from the antecubital vein using a venopuncture technique 

using heparin as an anticoagulant.  Samples were spun at 4000 rpm for 15 minutes in a 

refrigerated centrifuge (4⁰C).  The subsequent plasma was aliquoted into multiple micro-

centrifuge tubes and stored at -30 ⁰C for later analysis of glucose and insulin concentrations.   

 

Post Ride Recovery.  Following each post-ride biopsy the subjects recovered in a thermo-neutral 

environment (~20 ˚C) for four hours.  During this time the subjects remained lying down but 

were permitted to read a book, watch TV, listen to music, etc. , but were not allowed to 

exercise.  The experimental condition utilized a noninvasive pneumatic compression device 

(PCD) (NormaTec pneumatic compression device, Newton Center, MA) for two 1-hour 

treatments starting at the beginning (0-60 minutes) of the recovery period and again 2 hours 

into the recovery period (120-180 minutes).  The PCD contains 5 air filled chambers that create 

pressure by filling and emptying that according to the manufacturer create pressures ranging 

from 30-90mmHg.  During each hour long treatment the noninvasive PCD cycled through each 

of the five chambers from the ankles, at chamber 1, to the upper quadriceps, at chamber 5.  

Each of the five chambers was set to inflate and pulse at 70 mmHg for 30 second intervals 
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before moving to the next successive chamber.  After the inflation of chambers 1, 2, and 3 the 

pressure from chamber 1 was released as chamber 4 began inflation.  After completion of the 

30 second pulse time on chamber 4 the pressure in chamber 2 was released.  Meanwhile 

chamber 5 begins pulsing at the same time that pressure in chamber 3 was released.   Upon 

completion of the pulsing in the 5th and final chamber, all of the remaining chambers 

depressurized for 30 seconds before repeating the next cycle.  These cycles repeated until one 

hour was reached.   For the passive recovery condition (PR) the subjects were outfitted with the 

pneumatic compression device but were not operational, therefore chamber pressures did not 

change. (Image 1)    

 

Carbohydrate feeding.  Subjects received two oral carbohydrate feedings that consisted of 1.8 

g.kg-1 BW of an oral dextrose solution (Azer Scientific glucose tolerance test beverage, 100g. 296 

ml-1, Azer Scientific, Morgantown, PA).  The first feeding was provided immediately after the 

initial muscle and blood sample was obtained post-ride and the second after the 120-minute 

sample collections.  The same beverage schedule was applied to both trials. 

 

Heart rate.  Heart rate monitors were worn by all subjects throughout each trial.  The monitors 

(Polar RS800CX, Polar Electro, Kempele, Finland) collected the subjects’ heart rate during each 

minute and the data was downloaded to a computer using the supplied software (Polar 

ProTrainer 5.0, Polar Electro, Kemplele, Finland).  This data was then analyzed during the entire 

recovery period and averaged for 0-60 minutes and 120-180 minutes for each trial. 
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Blood and Tissue Analysis.  Muscle samples were analyzed in triplicate to determine muscle 

glycogen concentrations using an enzymatic spectrophotometric method (77).  Samples were 

weighed and placed in 0.5 ml of a 2 N HCL solution.  The sample solutions were weighed, 

incubated in an oven for two hours at 100 ⁰C, and re-weighed and re-constituted to their 

original weight using distilled water.  To normalize pH, 1.5 ml of 0.67 M NaOH was added.  A 

volume of this muscle extract (100 µl) was added to 1 ml of infinity glucose  reagent 

(ThermoTrace Ltd., Middletown, VA) and read on a spectrophotometer at 340 nm.   Muscle 

glycogen concentration was calculated using the extinction coefficient of NADH and expressed 

in mmol·kg-1 wet wt·hr-1 of muscle.  

 

Blood samples were analyzed for glucose in triplicate using infinity glucose reagent 

(ThermoTrace Ltd., Middletown, VA) and read on a spectrophotometer at 340 nm.   Blood 

glucose concentrations were calculated using the extinction coefficient of NADH and expressed 

in mmol.L-1.   Samples were analyzed for insulin in triplicate using an enzymatic 

spectrophotometric ELISA method (EIA-2935, DRG International, Marburg 

Germany) and expressed in µIU·mL-1.   Total area under the curve (AUC) was calculated for 

blood glucose and insulin concentrations using the trapezoidal method.   

 

Statistical Analysis 

A two-tailed paired t-test was used to compare insulin and glucose AUC and rate of glycogen 

resynthesis, using Excel software (Microsoft Corp., Redmond, WA).  Muscle glycogen, blood 

glucose, insulin, lactate, and heart rate were analyzed using a two-way repeated measure 
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ANOVA (trial x time) with SPSS software (SPSS Inc., Chicago, IL).   A probability of type 1 error 

less than 5% was considered significant (p<0.05).   All descriptive data is reported as mean ± SD 

and experimental data is reported as mean ± SEM. 
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ABSTRACT 

The purpose of this study was to investigate the effects of pneumatic compression pants on 

post-exercise glycogen resynthesis.  Active male subjects (n=10) completed two trials consisting 

of a 90-minute glycogen depleting ride, followed by 4 hours of recovery with either a 

pneumatic compression device (PCD) or passive recovery (PR) in a random counterbalanced 

order.  A carbohydrate beverage (1.8 g.kg-1 bodyweight) was provided at 0 and 2 hours post 

exercise.  Muscle biopsies (vastus lateralis) were obtained immediately and 4 hours post 

exercise for glycogen analyses.  Blood samples were collected throughout recovery to measure 

glucose and insulin.  Eight finger stick blood samples for lactate were collected in the last 20 

minutes of the exercise period and during the initial portion of the recovery period.  Heart rate 

was monitored throughout the entire trial.  During the PCD trial subjects recovered using a 

commercially available recovery device (NormaTec PCD, Newton Center, MA) operational at 0-

60 and 120-180 min into recovery period.   The same PCD was worn during the passive recovery 

trial but was not turned on to create pulsatile pressures. Muscle glycogen increased similarly 

over the recovery period for both trials (6.9 ± 0.8 and 6.9 ± 0.5 mmol·kg-1 wet wt.·hr-1 for the PR 

and PCD trials, respectively) additionally, blood glucose, insulin, and lactate concentrations 

changed in respect to time but were not different between trials (p>0.05).  The use of PCD did 

not alter the rate of muscle glycogen resynthesis, blood lactate and the blood glucose and 

insulin concentrations associated with a post exercise oral glucose load. 

 

Key Words 

massage, insulin, glucose, carbohydrate, recovery 
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INTRODUCTION 

Recovery post exercise is a key component to repeat performances.  After exercise the internal 

milieu of the body is disrupted (60).  This disruption may result from creatine phosphate and 

adenosine triphosphate depletion, a decrease in muscle and blood pH, blood glucose 

concentration, and muscle glycogen levels (30, 37, 63), as well as increased inflammation (54) 

and fluid shifts from vasculature to the muscle (30).  Consequently, any recovery modality  that 

returns the disrupted internal environment back to homeostatic levels should lead to the ability 

to perform with maximal effort in subsequent exercise sessions (60).  Therefore many recovery 

modalities have become common.  These include, among others, massage (14, 60, 92, 95), 

compression garments (95), contrast bathing (29), and active recovery (24, 60).  However, 

evidence as to whether these enhance between-training recovery is equivocal (4).  

 

If muscle glycogen recovery is compromised, it may reduce an athlete’s ability to train at the 

desired intensity (39, 89).  Several factors have been shown to influence the rate of glycogen 

resynthesis following depletion.  These include the amount (48), timing (47), and carbohydrate 

(CHO) composition ingested post exercise (46, 52, 53, 77).  Additionally, it has been shown that 

ambient and muscle temperature also may affect the rate of glycogen synthesis (66, 81, 82).   It 

is unclear whether this is because of an effect of blood flow, or temperature regulation of 

metabolism.  Despite this, it remains unknown how massage/compression may affect glycogen 

resynthesis. 

There appears to be a lay acceptance that compression garments aid in post exercise recovery 

(4).  Compression garments are considered to provide an external pressure gradient that is 
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promoted to reduce the space available for swelling, hemorrhage, or hematoma formation 

(68).  To date, the evidence as to whether the recovery modality of compression is effective at 

enhancing recovery between exercise bouts remains to be fully elucidated (4).   Additionally, 

the limited research that has been published has produced conflicting results regarding the 

potential benefits of wearing compression garments during recovery from exercise (8, 59).   

These conflicting results are evidenced by two similar studies conducted by Berry et al. where 

subjects either cycled (8) or ran (7) on an ergometer for 3 minutes at 110% VO2 peak.  These 

results showed that the subjects who ran had no difference in lactate concentration when 

compared to a control group, while the cyclists had lower lactate concentrations when 

compared to a control group.  Although evidence may be conflicting, what remains apparent 

through anecdotal reports is that post exercise interventions such as compression garments 

and massage are commonly used among performance athletes in hopes of enhancing muscle 

recovery (29).  

 

The purpose of this study was to evaluate the effect of a mechanical pneumatic 

compression/peristaltic pulsing applied by a commercially available portable compression 

device (PCD) on muscle glycogen recovery, blood glucose, insulin, lactate and heart rate after 

exercise and oral glucose feedings. 
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METHODS 

Experimental Approach to the Problem 

In the present study, a randomized crossover experimental design was used to determine the 

effects of wearing a non-invasive pneumatic compression device (PCD) vs. a non-compression 

passive recovery (PR) control condition.  Muscle glycogen, blood glucose, insulin, and lactate 

were monitored with heart rate during the recovery period.  

 

Subjects 

The investigation was approved by the University of Montana’s Institutional Review Board for 

use of human subjects in research.  Each subject had the experimental risks and the study 

explained to them and subsequently provided written informed consent to participate.  Prior to 

data collection each subject completed a Physical Activity Readiness Questionnaire (PAR-Q).   

Ten active male participants (n=10) completed the study.  All study participants were healthy, 

injury free, and familiar with moderate-to-high intensity exercise (Table 1).  

 

Procedures 

Preliminary testing 

Timing.  All preliminary testing for each subject was performed no less than 48 hours prior to 

any experimental testing and after a minimum of a three hour fast.  

 

Body composition.  Body composition was measured using hydrodensitometry.  Briefly, an 

electronic strain-gauge scale (Exertech, Dreshbach, MN) measured underwater weight (33).  
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Under water weight was then used to calculate body density and using estimated residual lung 

volume and converted to body composition using the Siri equation (80).   

 

VO2 peak testing.  A maximal exercise test was completed on a laboratory cycle ergometer 

(Velotron, RacerMate Inc. , Seattle WA) to determine peak oxygen uptake (VO2peak) and 

maximal power output (Wmax).  Subjects completed a graded exercise protocol, starting at 95 

watts and increasing by 35 watts every 3 minutes until volitional fatigue.  During the test, 

expired gases were continuously collected and analyzed every 15 seconds in a mixing chamber 

using a calibrated metabolic cart (Parvomedics, Inc., Sandy, UT).  Peak oxygen uptake was 

determined as the highest achieved oxygen uptake during the test while maximum power 

output was calculated as the last completed stage in watts plus the fraction of time that was 

completed in partial stages multiplied by 35 watts.  

 

Experimental testing (Figure 1a and 1b) 

 

Dietary recall.  For 24 hours prior to the subject’s first exercise/recovery trial, a detailed food 

log was maintained.  For the second trial the subjects were asked to consume the same food 

and quantity of those foods as they did for the first trial.  The subjects were also asked to 

refrain from physical activity in the 24 hour period prior to each trial.  

 

Glycogen depletion ride.  Participants were scheduled for two exercise trials which were 

separated by no less than one week.  Before each exercise trial the subjects were asked to fast 
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for 12 hours prior to arrival.  Upon arrival to the laboratory the subjects cycled in a thermo-

neutral environment for a total of 90 minutes on the same Velotron ergometer.  Each 90 

minute cycling session included 10 minutes at the power output corresponding to 55% watt 

max.  Thereafter a series of 10 intervals (including two minutes at 80% watt max followed by 

four minutes at 50% watt max) were completed.  After the series of 10 intervals the subjects 

completed 12 minutes at 60% watt max followed by 10 minutes at 50% watt max.  During the 

exercise trials subjects were allowed to consume water ad libitum, which was then 

standardized for the second trial. 

 

Blood Lactate.  Eight finger stick blood samples were taken during each trial to measure blood 

lactate concentration.  The samples were collected starting after the completion of the last 

(10th) interval during the depletion ride.  Additional samples were collected at 10 and 20 

minutes after completion of the last interval.   Sampling was continued after the collection of 

the post-exercise muscle biopsy at 0, 5, 10, 15, 25 minutes into the recovery period.  Prior to 

collection, the site was cleaned with alcohol before obtaining the blood sample.  Once the 25 µl 

blood sample was obtained it was placed in 50 µl of a cell lysing agent and frozen to -30 ⁰C until 

subsequent analysis using a YSI 1500 (Yellow Spring Instruments, Inc., Yellow Springs, OH).  

 

Muscle Biopsies.  Muscle biopsies of the vastus lateralis muscle were taken immediately and 4 

hours after the exercise bout using the percutaneous biopsy needle technique with the aid of 

suction (26).  The 4-hour post exercise biopsies were taken from a site approximately 2 cm 

proximal to the previous biopsy location.  Biopsies for the second trial were taken from the 



27 
 

opposite leg from the first trial.  Excess blood, fat, and connective tissue were immediately 

removed, and tissue samples were frozen in liquid nitrogen and stored in a freezer at -80 ⁰C for 

the later analysis of muscle glycogen.  

 

Blood sampling.  Blood samples to examine plasma glucose and insulin concentration were 

drawn immediately after exercise, then at 30, 60, 120, 150, 180, and 240 minutes after 

exercise.  Samples were obtained from the antecubital vein using a venopuncture technique 

using heparin as an anticoagulant.  Samples were spun at 4000 rpm for 15 minutes in a 

refrigerated centrifuge (4⁰C).  The subsequent plasma was aliquoted into multiple micro-

centrifuge tubes and stored at -30 ⁰C for later analysis of glucose and insulin concentrations.   

 

Post Ride Recovery.  Following each post-ride biopsy the subjects recovered in a thermo-neutral 

environment (~20 ˚C) for four hours.  During this time the subjects remained lying down but 

were permitted to read a book, watch TV, listen to music, etc. , but were not allowed to 

exercise.  The experimental condition utilized a noninvasive pneumatic compression device 

(PCD) (NormaTec pneumatic compression device, Newton Center, MA) for two 1-hour 

treatments starting at the beginning (0-60 minutes) of the recovery period and again 2 hours 

into the recovery period (120-180 minutes).  The PCD contains 5 air filled chambers that create 

pressure by filling and emptying that according to the manufacturer create pressures ranging 

from 30-90mmHg.  During each hour long treatment the noninvasive PCD cycled through each 

of the five chambers from the ankles, at chamber 1, to the upper quadriceps, at chamber 5.  

Each of the five chambers was set to inflate and pulse at 70 mmHg for 30 second intervals 
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before moving to the next successive chamber.  After the inflation of chambers 1, 2, and 3 the 

pressure from chamber 1 was released as chamber 4 began inflation.  After completion of the 

30 second pulse time on chamber 4 the pressure in chamber 2 was released.  Meanwhile 

chamber 5 begins pulsing at the same time that pressure in chamber 3 was released.   Upon 

completion of the pulsing in the 5th and final chamber, all of the remaining chambers 

depressurized for 30 seconds before repeating the next cycle.  These cycles repeated until one 

hour was reached.   For the passive recovery condition (PR) the subjects were outfitted with the 

pneumatic compression device but were not operational, therefore chamber pressures did not 

change. (Image 1)    

 

Carbohydrate feeding.  Subjects received two oral carbohydrate feedings that consisted of 1.8 

g.kg-1 BW of an oral dextrose solution (Azer Scientific glucose tolerance test beverage, 100g. 296 

ml-1, Azer Scientific, Morgantown, PA).  The first feeding was provided immediately after the 

initial muscle and blood sample was obtained post-ride and the second after the 120-minute 

sample collections.  The same beverage schedule was applied to both trials. 

 

Heart rate.  Heart rate monitors were worn by all subjects throughout each trial.  The monitors 

(Polar RS800CX, Polar Electro, Kempele, Finland) collected the subjects’ heart rate during each 

minute and the data was downloaded to a computer using the supplied software (Polar 

ProTrainer 5.0, Polar Electro, Kemplele, Finland).  This data was then analyzed during the entire 

recovery period and averaged for 0-60 minutes and 120-180 minutes for each trial. 
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Blood and Tissue Analysis.  Muscle samples were analyzed in triplicate to determine muscle 

glycogen concentrations using an enzymatic spectrophotometric method (77).  Samples were 

weighed and placed in 0.5 ml of a 2 N HCL solution.  The sample solutions were weighed, 

incubated in an oven for two hours at 100 ⁰C, and re-weighed and re-constituted to their 

original weight using distilled water.  To normalize pH, 1.5 ml of 0.67 M NaOH was added.  A 

volume of this muscle extract (100 µl) was added to 1 ml of infinity glucose  reagent 

(ThermoTrace Ltd., Middletown, VA) and read on a spectrophotometer at 340 nm.   Muscle 

glycogen concentration was calculated using the extinction coefficient of NADH and expressed 

in mmol·kg-1 wet wt·hr-1 of muscle.  

 

Blood samples were analyzed for glucose in triplicate using infinity glucose reagent 

(ThermoTrace Ltd., Middletown, VA) and read on a spectrophotometer at 340 nm.   Blood 

glucose concentrations were calculated using the extinction coefficient of NADH and expressed 

in mmol.L-1.   Samples were analyzed for insulin in triplicate using an enzymatic 

spectrophotometric ELISA method (EIA-2935, DRG International, Marburg 

Germany) and expressed in µIU·mL-1.   Total area under the curve (AUC) was calculated for 

blood glucose and insulin concentrations using the trapezoidal method.   

 

Statistical Analysis 

A two-tailed paired t-test was used to compare insulin and glucose AUC and rate of glycogen 

resynthesis, using Excel software (Microsoft Corp., Redmond, WA).  Muscle glycogen, blood 

glucose, insulin, lactate, and heart rate were analyzed using a two-way repeated measure 
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ANOVA (trial x time) with SPSS software (SPSS Inc., Chicago, IL).   A probability of type 1 error 

less than 5% was considered significant (p<0.05).   All descriptive data is reported as mean ± SD 

and experimental data is reported as mean ± SEM. 

 

RESULTS 

Muscle Glycogen.  Post-exercise muscle glycogen concentrations were similar for both the 

pneumatic compression device condition (PCD) and for the passive recovery condition (PR).   

The main effect for time was significant (p<0.05) indicating an increase in muscle glycogen after 

4-hours of recovery. The rate of glycogen resynthesis was similar between both conditions 6.9 ± 

0.8 vs. 6.9 ± 0.5 mmol·kg-1 wet wt.·hr-1 for the PCD and PR trials, respectively.  However, there 

were no differences between treatments.  (Figure 3) 

 

Plasma Glucose.  Plasma glucose concentrations were not different between PCD and PR trials 

at all time points.   The main effect for time was significant (p<0.05) demonstrating that the 

blood glucose concentration was elevated above post-exercise (time 0) for 150 minutes 

following the initial carbohydrate feeding, and dropped below baseline at the end of the 

recovery period (240 min).   (Figure 4).  Glucose AUC was also similar between trials (p>0.05).  

(Figure 2a) 

 

Plasma Insulin.  Plasma insulin concentrations were not different between PCD and PR trials at 

all time points.   The main effect for time was significant (p<0.05) demonstrating that the blood 

insulin concentration was elevated above post-exercise (time 0) baseline at all time points 
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during the recovery period following carbohydrate feeding.  (Figure 5).  Insulin AUC was also 

similar between trials (p>0.05).  (Fibgure 2b) 

 

Lactate.  Blood lactate concentrations were not different between PCD and PR trials at all time 

points.   The main effect for time was significant (p<0.05) demonstrating that the blood lactate 

concentration was decreased below the post (10th) interval blood lactate concentration (time 0) 

at all time points during the recovery period.  (Figure 6) 

 

Heart rate.  Average heart rates were similar between PCD and PR trials during 0 to 60 minutes 

during the recovery period (73 ± 3 vs. 76 ± 3 BPM, respectively) and 120 to 180 minutes (69 ±  

vs. 69 ± 3 BPM respectively).   However, the average heart rate was significantly lower during 

the 120-180 min measurement period    

 

DISCUSSION 

The aim of this study was to determine the effects of a commercially available pneumatic 

compression device (PCD) on glycogen resynthesis after a glycogen depleting bout of cycling 

exercise.  The primary findings indicated that the two 60 min pneumatic compression sessions 

did not alter rates of glycogen resynthesis compared to passive recovery over a 4 hour recovery 

period.  

 

The feeding protocol used in the current study adheres to previous recommendations on 

carbohydrate feeding strategies (47, 48, 70) to enhance short–term glycogen synthesis (≤4hr).  
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Carbohydrate feedings were given immediately after exercise which has been shown to result 

in rates of glycogen synthesis 45% greater than if delayed, while the addition of a 2 hour 

feeding has been demonstrated to further increase muscle glycogen synthesis (47).  The 

recovery protocol in the present study was further optimized by using carbohydrate feedings of 

1.8 g.kg-1 BW every two hours, which is in accordance with the recommendation for optimal 

glycogen synthesis of at least 1.5 g.kg-1 BW every two hours (48).  

 

While there is a lack of data regarding the impact of compression or manual massage on 

glycogen resynthesis, our results parallel those found by Crane et al. who found that massage 

has no effect on muscle glycogen resynthesis after cycling to exhaustion (23).  Muscle glycogen 

synthesis is most likely influenced by a combination of carbohydrate intake, intestinal glucose 

absorption, glucose delivery via the blood stream, glucose extraction by other tissues, and the 

muscles glucose-transport capacity (51), and more recently temperature of the ambient (66) 

and muscle environments (81).  Because recovery modalities typically target blood flow , they 

may theoretically alter glucose availability to muscle during recovery and therefore alter the 

process of glycogen synthesis (4).  However, it is unclear how massage and/or pneumatic 

compression alter blood flow to muscle during recovery.   If indeed muscle blood flow is altered 

by PCD, then extraction of glucose from the blood may be changed, in which case glycogen 

replenishment, and blood glucose and insulin may be affected.   In the current study the 

significant increase in plasma blood glucose and insulin (p<0.05) post exercise shows that our 

feeding strategy was effective in presenting substantial glucose to the muscle for metabolism.  

Furthermore the rate of muscle glycogen resynthesis was similar to those found in other 
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investigations (47, 51, 66, 77, 81) at 6.9 ± 0.8 vs. 6.9 ± 0.5 mmol·kg-1 wet wt.·hr-1 for the PCD 

and PR trials, respectively.  Hemmings et al. also showed no difference in blood glucose 

following a 20 minute massage treatment after twenty minutes of boxing when compared to a 

passive recovery control group (38).  Therefore, it is unlikely that the glucose bolus feeding 

strategy was limiting to glycogen synthesis post exercise. 

 

Although some earlier studies seemed to support the effects of massage on performance 

enhancements (reviewed by Goats (32) and Weerapong et al. (92)), recent investigations of 

arterial inflow measured with Doppler ultrasound velocimetry during rest found that massage 

had no effect of blood flow (79, 88).  Hinds et al. also found no effect of massage on blood flow 

immediately after leg exercise (41).  Furthermore, Wiltshire et al. noted a decrease in blood 

flow during massage of the forearm (98).  In the current study no changes in HR and blood 

lactate glucose or insulin were noted (p<0.05) which would indicate that the PCD had little to 

no effect on blood flow.   However, blood flow was not directly measured in our study.  

Similarly, other studies have also noted no changes in lactate concentrations post massage (38, 

62).   Collectively this suggests that compression/massage has any effect on muscle blood flow 

post exercise. 

  

A potential limitation of commercially manufactured lycra and nylon compression tights is 

whether or not they can exert enough pressure to be effective (24).  Further, it is doubtful that 

standard sizes of compression tights would be effective given the widespread differences in leg 

dimensions and tissue structure within a given population (24).  However with the use of 
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pneumatic compression devices, leg girth does not affect the amount of compressive forces 

experienced by the user.  Additionally, the pressure applied using a pneumatic compression 

system is much greater than that of lycra and nylon compression tights.  This is evident in other 

studies done on healthy subjects where the compression using various lycra and nylon 

garments ranged from 18-22mm Hg (2, 8).  In contrast the PCD used in this study were set to 

apply intermittent compression equivalent to 70mmHg.  The effect of this increased pressure in 

relation to recovery in healthy subjects still remains unknown. 

 

Anecdotal information from coaches, athletic trainers, and athletes suggest that various types 

of recovery modalities including the use of massage (14, 60, 92, 95) and compression garments 

(95) are commonly used in an effort to restore homeostatic environments within the body.  

However, based upon our findings in addition to other recent studies, there appears to be 

limited evidence for the use of compression/massage as an effective modality to increase rates 

of muscle glycogen synthesis.   However, recent evidence has shown that massage attenuates 

inflammatory signaling after exercise induced muscle damage (23).  Therefore, further research 

in this area is needed to elicit the effects of compression on inflammation and how this 

influences the recovery process of the muscle.   It is also unclear how compression may alter 

aspects of muscle recovery after trauma or eccentric damage has been incurred. 

 

PRACTICAL APPLICATIONS 

This is the first study that compares recovery outcomes after the use of a non-invasive 

pneumatic compression device (PCD) to a non compression passive recovery (PR) control group 
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in healthy moderately trained male cyclists.  Wearing PCD had no effect on glycogen 

resynthesis rates or blood lactate post exercise.   Our results suggest that this may be due to 

similar responses in blood glucose and insulin levels after feedings in the PR and PCD groups.  

Therefore, using a PCD to increase muscle glycogen post exercise in an effort to increase 

energetic recovery does not appear effective. However, our findings do not mean that other 

mechanisms of recovery such as inflammation reduction, DOMS,  muscle damage. Etc.  may or 

may not be affected by the use of a PCD.  
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TABLES 

 Mean ± SD 

Age (years)  28.1 ± 7.3 

Height (cm) 181.6 ± 4.0 

Weight (kg)  77.4 ± 9.1 

Body composition (% fat)  15.3 ± 8.2 

VO2peak (L·min-1)  4.5 ± .4 

Wmax (watts)  328.7 ± 34.4 

Table 1. Descriptive data of subjects (n=10)  
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Image 1. NormaTec Pneumatic Compression Device 
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Figure 1a. Pneumatic Compression Device Trial Timeline  
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Figure 1b. Passive Recovery Trial Timeline  
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Figure 2a. Total AUC for blood glucose. 
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Figure 2b. Total AUC for blood insulin. 
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Figure 3. Changes in muscle glycogen concentration during the four hour post exercise period.  
* p<0.05 vs. time point 0 (main effect of time).   
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Figure 4. Changes in blood glucose concentration during the four hour post exercise period.  * 
p<0.05 vs. time point 0 (main effect of time).   
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Figure 5. Changes in blood insulin concentration during the four hour post exercise period.  * 
p<0.05 vs. time point 0 (main effect of time).   
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Figure 6. Changes in blood lactate concentration post exercise.  * p<0.05 vs. time point 0 (main 
effect of time).   
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Appendix A 

 

 

  
Montana Center for Work Physiology and Exercise Metabolism  

 

SUBJECT INFORMATION AND CONSENT FORM 
 
PROJECT IN BRIEF:  Effect of lower limb compression (NormaTec) post-exercise on glycogen 
resynthesis and glucose kinetics.  
 
RESEARCHERS:  Dr. Brent Ruby (406) 243-2117 

Nathan Keck 
John Cuddy 
Charles Dumke 

 
The University of Montana 
Montana Center for Work Physiology and Exercise Metabolism 
32 Campus Drive 
McGill Hall – HHP 
Missoula, MT 59812 
(406) 243 – 2117 (Dr. Brent Ruby) 
 

Please read the following information carefully and feel free to ask questions.  Only sign the final 
page when you are satisfied procedures and risks have been sufficiently explained to you. 

 
REQUIREMENTS 
 
This research study requires that you meet the following criteria: 
 

 Participants must be males between the ages of 18 and 40. 
 
PURPOSE OF THE STUDY  
  
The purpose of this research  is to determine the effect of noninvasive pneumatic lower limb 
compression post-exercise on muscle glycogen (muscle sugar) after acute exercise in a laboratory 
setting.  The effect of using pneumatic compression post exercise on glycogen resynthesis remains 
unknown.  
TEST PROCEDURES 
 

Participants in the study will be asked to complete the following assessments:  
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1. A pre-screening assessment which involves a health/exercise questionnaire (Par-Q) 
a. Prior to any testing, you will complete a physical activity readiness questionnaire 

(PAR-Q) to screen for known risk factors of coronary heart disease. If any of these 
questions on the PAR-Q are answered with a "yes" the you will be eliminated from 
the study 

2. A measure of percent body fat obtained using underwater weighing 
a. This test session will require that you do not eat for a minimum of 3 hours prior to 

the testing.  Prior to the test, body weight will be recorded in your bathing suit.  You 
will then be asked to complete between 3 – 6 underwater weighing procedures.  
The underwater weight requires that you are submersed in our weighing tank 
(similar to a hot tub) and that you maximally exhale as much air as possible while 
underwater.  The underwater weight will be recorded within 2-4 seconds and then 
you will be signaled to surface.  This procedure will be repeated until three 
measurements have been obtained that are within 100 grams of each other.  A nose 
clip will be provided upon request.  This test will take approximately 30 minutes. 

3. A maximal cycle ergometer test to measure aerobic fitness  
a. This test will consist of riding on a laboratory exercise cycle ergometer to volitional 

fatigue.  The resistance of the cycle will increase every three minutes and will 
progress to fatigue.  You will be encouraged to continue to ride until volitional 
fatigue.  During this test you will wear a nose clip and headgear that will support a 
mouthpiece.  This will allow us to measure the amount of oxygen that the body uses 
during this exercise.  Heart rate will be measured using an elastic chest strap that is 
worn on the skin under your shirt around your chest.  This test will take 
approximately 30 - 45 minutes.  You will be asked to fast for approximately 3 hours 
prior to this test. 

4. Two, one-hour exercise sessions followed by four hours of recovery in a thermo-neutral 
environment 

a. You will report to the laboratory after a 12-hour fast.  You will then exercise (cycle) 
in a thermo-neutral environment for 10-minute warm up at 55% peak VO2. 
Thereafter, you will complete a series of ten intervals, which include two minutes at 
approximately 80% peak VO2 followed by four minutes at approximately 50% peak 
VO2. After the series of 10 intervals, you will complete 12 minutes at 60% peak VO2 
followed by 10 minutes at 50% peak VO2. During the exercise trials, you will be 
allowed to consume water ad libitum. During both trials you will recover in a 

thermo-neutral environment (approximately 68F) for four hours. You are permitted 
to read a book, watch TV, listen to music, etc., but cannot exercise. You must remain 
in a lying down or sitting up position.  

b. During this time you will either use a noninvasive pneumatic compression device for 
a total of two (2) hours or recover in the thermo-neutral environment while wearing 
the noninvasive pneumatic compression device in an inactivated state.  During both 
trials you must wear shorts and a t-shirt. You are free to terminate the exercise at 
any time if you feel fatigued. Before the first trial, you will be randomly selected to 
either use the noninvasive pneumatic compression device or use the noninvasive 
pneumatic compression device in an inactivated state.  Then, during the second 
trial, you will recover with the opposite treatment of what you received during the 
first trial. 
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5. Consumption of liquid carbohydrate after exercise 
a. Immediately following and two-hours after exercise, you will be provided a 

standardized high-carbohydrate drink.  You will be asked to consume this drink as 
quickly as possible without upsetting your stomach. The amount of carbohydrate 
consumed will be 1.8 g/kg. 

6. Venous blood samples collected from an arm vein for measuring blood glucose and insulin 
a. A total of fourteen blood samples (Seven per trial) will be collected using a 

venopuncture technique.  The site will be cleaned with alcohol prior to the blood 
draw, and wiped clean afterwards.  These samples will be collected to measure 
blood glucose and insulin.  All of the blood samples will be obtained under the 
direction of Dr. Brent Ruby or Dr. Charles Dumke.  Blood samples will be taken after 
exercise, and then at intervals of 30, 60, 120, 150, 180, and 240 min after exercise. 
~3 ml will be drawn each time for a total of ~21 ml per trial or 42 ml total. 

7. Finger stick blood draws to measure blood lactate 
a. A total of sixteen finger stick blood draws (eight per trial) will be collected using a 

sterile lancet. The site will be cleaned with alcohol prior to the blood draw, and 
wiped clean afterwards.  These samples will be collected to measure blood lactate.  
All of the blood samples will be obtained under the direction of Dr. Brent Ruby or Dr. 
Charles Dumke.   

8. Muscle biopsies obtained immediately after ride, and four hours after ride  
a. A total of four (two per trial x two trials) muscle biopsies (two from each leg) will be 

obtained from the front of your thigh muscle (vastus lateralis, approximately 6 
inches up from the kneecap on the lateral side of your thigh).  The muscle biopsy 
procedure requires that the site be sterilized.  After the site is cleaned, a small 
amount of lidocaine will be injected just under the skin surface.  Additional small 
amounts of lidocaine will be injected around a small 1-inch area around the site on 
the leg.  After the area is treated with the lidocaine (approximately 5 ml, 1% 
lidocaine), a small incision (approximately 1/4 inch long) will be made through the 
skin and the outer covering (fascia) of your muscle to a depth of approximately 3/4-
1.5 inches. The biopsy needle will then be inserted through the incision and the 
sample obtained.  After the sample is obtained, the site will be cleaned and closed 
with steri-strips and/or a single stitch and bandaid and wrapped with a compression 
bandage.  The biopsy samples will be obtained  a) immediately after the exercise 
session, and b) four hours after the exercise session (biopsies for each trial will be 
taken on the same leg, proximal to the initial or previous sample).  This will be 
repeated for the second trial using the opposite leg.  The muscle biopsies will be 
used to evaluate alterations in muscle carbohydrate and fat utilization kinetics in 
response to physical activity. Latex free bandages will be provided if subjects have a 
known allergy to latex. All of the muscle biopsies will be conducted by Dr. Brent 
Ruby or Dr. Charles Dumke. 

9. A 24-hour dietary recall to be repeated during the subsequent trial 
a. For 24-hours before your first exercise trial you will be asked to record the foods 

and quantity that you consume.  For the second trial, you will be asked to consume 
the same foods and quantity of those foods that you did for the first trial. 

10. A 24-hour exercise recall to be repeated during the subsequent trial 
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a. For 24-hours before your first exercise trial you will be asked to record all physical 
activity and quantity that of that activity you do.  For the second trial, you will be 
asked to repeat the same activity and duration of activity that you did for the first 
trial. 

11. Nude body weight will be taken before, after, and during each trial 
a. Nude body weight will be measured in private on a calibrated scale.  Weights will be 

taken before, during, and after each trial. 
12. Urine volume will be measured during each trial. 

a. You will be asked to void your bladder before each trial.  After the initial void, urine 
will be collected in a disposable plastic container and urine volume will be measured 
for the duration of each trial. 

 
 

RISKS AND DISCOMFORTS 
 
1. Mild discomfort may result during and after the exercise.  These discomforts include shortness 

of breath, tired and/or sore legs, nausea and possibility of vomiting.  
2. Muscle soreness after the tests may occur as a result of the exercise, but should not persist. 
3. Certain changes in body function take place when any person exercises.  Some of these changes 

are normal and others are abnormal.  Abnormal changes may occur in blood pressures, heart 
rate, heart rhythm or extreme shortness of breath.  Very rare instances of heart attack have 
occurred.  Every effort will be made to minimize possible problems by the preliminary 
evaluation and constant surveillance during testing.  The laboratory has standard emergency 
procedures should any potential problems arise. 

4. Mild symptoms of dehydration such as headache and general fatigue may result during and 
after the exercise.   

5. You will be informed of any new findings that may affect your decision to remain in the study. 
6. The muscle biopsy and blood sampling techniques may cause some local and temporary 

discomfort.  It is normal to have the sensation of a deep tissue bruise around the site of the 
muscle biopsy.  This pain should be manageable and not above the pain associated with a 
“charlie horse” type bruise.   

7. There is a minor risk of infection associated with blood sampling and the muscle biopsy.  Should 
you notice unusual redness, swelling or drainage at the biopsy incision site or at the sites of the 
blood sampling you should seek medical attention and then notify Brent Ruby, study director. 

8. There are minimal risks associated with the use of lidocaine (the local anesthetic).  The risk of a 
reaction to the lidocaine is extremely low (approximately 1/1,000,000).  However, to minimize 
this risk, no more than 5-9 ml of a 1% lidocaine solution will be used per biopsy.  You will be 
excluded from participation if you have a known history of allergic reactions to local 
anesthetics. 

9. During any of the exercise tests, should symptoms such as chest discomfort, unusual shortness 
of breath or other abnormal findings develop the exercise physiologist conducting the research 
will terminate the test. Guidelines by the American College of Sports Medicine will be followed 
to determine when a test should be stopped. These symptoms include moderate to severe 
angina (chest pain), increased dizziness, shortness of breath, fatigue and your desire to stop. 

 
PAYMENT FOR PARTICIPATION 
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For the preliminary tests (body fat, and cycle ergometer max test), you will be paid $50. You will be 
paid $125 for each exercise/recovery session. Therefore, upon completion of the entire study, you 
will be paid a total of $300.  If you decide to withdraw at any time, you will be compensated for the 
test sessions you have initiated.   
 
BENEFITS OF PARTICIPATION 
 
1. The information from these tests will provide you with an accurate assessment of your aerobic 

fitness and body composition that can be compared with norms for your age and sport, but may 
be of little benefit to your understanding of your personal fitness. There are no other direct 
benefits to the participants in the study. 

2. There is no promise that you will receive any benefit outside of the financial payment as a result 
of taking part in this study. 

3. The scientific benefit includes elucidating the effects of recovery while using noninvasive 
pneumatic compression on muscle glycogen resynthesis. 

 
CONFIDENTIALITY 
 

1. Your records will be kept private and not be released without consent except as required by 
law. 

2. Only the researcher and his research assistants will have access to the files. 
3. Your identity will be kept confidential. 
4. If the results of this study are written in a scientific journal or presented at a scientific 

meeting, names will not be used. 
5. All data, identified only by an anonymous ID #, will be stored in our laboratory. 
6. The signed consent form and information sheet will be stored in a locked cabinet separate 

from the data. 
 
COMPENSATION FOR INJURY 
 
Although we believe that the risk of taking part in this study is minimal, the following liability 
statement is required in all University of Montana consent forms.  In the event that you are injured 
as a result of this research you should individually seek appropriate medical treatment.  If the injury 
is caused by negligence of the University or any of its employees, you may be entitled to 
reimbursement pursuant to the Comprehensive State Insurance Plan established by the Department 
of Administration under the authority of M.C.A., Title2, Chapter 9.  In the event of a claim for such 
injury, further information may be obtained from the University’s Claim representative or University 
Legal Counsel. 
 
VOLUNTARY PARTICIPATION AND WITHDRAWAL 
 
It is important that you realize that you are free to withdraw from the study at any time.  As 
mentioned above, even if you decide to drop out of the study, you will receive full compensation 
for all the test sessions you have initiated.   A signed copy of this consent form will be provided for 
you.  In addition, the data collected during this study will be done at no cost to you.   
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QUESTIONS 
 
You may wish to discuss this with others before you agree to take part in this study.  If you have any 
questions about the research now or during the study contact Brent C. Ruby at (406) 243-2117 
(office) or (406) 396-4382.  If you have any questions regarding your rights as a subject, you may 
contact the chair of the IRB through the University of Montana Research Office at (406) 243-6670.  
 
STATEMENT OF CONSENT 
 
I have read the above statements and understand the risks involved with this study.  I authorize 
Brent C. Ruby and such assistants that he may designate, to administer and conduct the testing as 
safely as possible with a minimal amount of discomfort.  If I have additional questions, I may 
contact Brent C. Ruby at home (406) 542-2513, cell (406) 396-4382 or at the WPEM Laboratory 
(406) 243-2117.  
 
Participant (print)   
 
Signature        
 
Date                                                
 

STATEMENT OF CONSENT TO BE PHOTOGRAPHED DURING DATA COLLECTION  
 
During the study, I understand that pictures may be taken.  I provide my consent to having my 
picture taken during the course of the research study.  I provide my consent that my picture may be 
used in some presentations related to this study.  If pictures are used at any time for presentation, 
names will not be associated with them. 
 
Signature         Date  ____ 
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